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Abstract
My thesis focuses on developing a method
for the behavioral classification of net-
work devices using state-of-the-art ma-
chine learning methods. Since computer
networks have natural graph structures,
the implemented methods focus primarily
on the graph representation of networks.
I have conducted extensive research on
node classification in static and dynamic
graphs and developed a new model for
classifying nodes in a dynamic network,
the Snapshot GNN. Leveraging deep do-
main knowledge, I have crafted meaning-
ful device representations and developed
new node positional features that capture
the global position of a node in the graph.
The proposed node positional features are
scalable to large graphs, and their effect
is confirmed in an ablation study. The
implemented models (three baseline mod-
els and graph neural networks) are then
evaluated on three real-world networks
and their devices. Experiments show that
the models, in general, are able to learn
the diverse device classes in the networks
well. The graph-based models were the
best-performing models across the eval-
uation. The results also show that the
graph-based models need frequent retrain-
ing, especially in cases where graph struc-
ture is crucial for the classification task.

Keywords: network, device, telemetry,
semi-supervised classification, graph
neural network, static graph, dynamic
graph, node classification

Supervisor: Ing. Martin Kopp, Ph.D.

Abstrakt
Má diplomová práce se zaměřuje na vývoj
metody klasifikace chování síťových zaří-
zení pomocí nejmodernějších metod stro-
jového učení. Vzhledem k tomu, že počíta-
čové sítě mají přirozenou grafovou struk-
turu, zaměřují se implementované metody
především na grafovou reprezentaci sítí.
Provedl jsem rozsáhlý výzkum klasifikace
uzlů ve statických a dynamických grafech
a vyvinul jsem nový model pro klasifikaci
uzlů v dynamické síti, Snapshot GNN. S
využitím doménových znalostí jsem vytvo-
řil reprezentace zařízení a vyvinul nový
způsob zachycení globální polohy uzlu v
grafu. Navržená polohová charakterizace
uzlů je škálovatelná na velké grafy a její
účinek byl potvrzen v ablační studii. Im-
plementované modely (tři základní mo-
dely a grafové neuronové sítě) jsou pak
vyhodnoceny na třech reálných sítích a
jejích zařízeních. Experimenty ukazují, že
modely jsou schopny se dobře naučit růz-
norodé třídy zařízení v sítích. V celkovém
hodnocení se jako nejlépe fungujícími mo-
dely ukázaly ty založené na grafech. Vý-
sledky také ukazují, že modely založené
na grafech potřebují časté přetrénovávání,
zejména v případech, kdy je pro klasifi-
kační úlohu klíčová struktura grafu.

Klíčová slova: síť, zařízení, telemetrie,
kombinace učení s učitelem a bez učitele,
grafová neuronová síť, statický graf,
dynamický graf, klasifikace uzlů

Překlad názvu: Behaviorální klasifikace
síťových zařízení
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Chapter 1
Introduction

Computers have played a significant role in our society since the second half
of the previous century. Since the breakout of the internet, the number of
interconnected devices of various types has started to grow exponentially.
Currently, most companies heavily rely on the internet’s incredible potential.
For this purpose, many companies utilize their own large private networks
critical for their operation. They must be carefully administered and moni-
tored to prevent failures in the network that would lead to business disruption.
A crucial part of this process is determining the role and importance of each
device in the network. These devices can range from internet-connected light
bulbs to servers handling financial transactions.

However, determining the type of a device is prohibitively difficult and time-
consuming to do manually. It requires deep domain and network infrastructure
knowledge, and it becomes impossible to manage properly in large-scale
networks. The complexity comes from frequent fluctuations of devices, new
devices joining the network, short-term virtual machines, etc. These issues
also cause exact automated solutions to be extremely hard and expensive to
configure and maintain. As a consequence, many devices within networks
end up either mislabeled or not labeled at all.

In my thesis, I approach this issue as a semi-supervised classification
problem and solve it by applying state-of-the-art machine learning methods,
specifically graph neural networks. I have further combined the methods with
knowledge of networking to develop and extensively test multiple methods.
Models from the first family of methods classify a device only based on infor-
mation about the device itself. The networking data, however, has a natural
graph structure, which can be leveraged in multiple ways to better capture
the behaviour of a device. Therefore, models leveraging the constructed static
graph structure, as well as device information, form the second family of
approaches. The inferred graph structure also changes throughout the day,
along with changes in the communication patterns of devices in the network.
These changes lead to a representation in the form of dynamic graphs, which
change the graph structure and node features over time. Consequently, the
third family of approaches that I utilize is designed for node classification in
dynamic graphs.

In my thesis, I present research on state-of-the-art methods in each of
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1. Introduction .....................................
these three families. Based on my research, I have designed new features for
capturing important device information, as well as developed and implemented
various suitable models. The models are then trained and tested on real-
world, large-scale networks, which include various industries and numerous
distinct device types. As a consequence, the model evaluation provides valid
information on the usability of the models in the real world. Cisco Systems
provided the dataset from real-world networks.
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Chapter 2
Methods

The general task of device classification based on network traffic has yet to
be thoroughly studied. Therefore, I employ methods that have been used on
data with similar structures, which fall into three families of models. The
first family includes methods focusing only on information about the device
itself, as depicted in Figure 2.1. I use three commonly used models from
this family of methods. The first of these algorithms is the Support Vector
Machine (SVM) [1], which generally tries to find the optimal hyperplane for
class separation based on various kernels representing feature vector distances.
The second algorithm is the Random Forest (RF) [2], which is a well-known
ensemble algorithm separating the feature space by orthogonal cuts. The last
algorithm is the AdaBoost [3] with base learner Decision Tree, which belongs
to the family of gradient boosting approaches. These three models serve as
baseline models for more advanced ones throughout the thesis.

The more advanced algorithms, leveraging the graph structure, are de-
scribed in-depth in the following two sections. The first section describes the
numerous methods that work with the static graph structure.

Figure 2.1: The baseline algorithms do not utilize the computer network structure
and only evaluate the feature vector of a single device, highlighted by the red
rectangle.

3



2. Methods.......................................
2.1 Static graph-based models

The second family of models focuses on graphs that do not evolve over time,
so-called static graphs. The structure of networks naturally leads to a graph
representation, which is heavily used in various manners by models described
in this section. An undirected graph is represented as G = (V, E), where V is
the set of nodes in the graph and E = {{i, j}|i, j ∈ V} is the set of edges in
the undirected graph G. In the constructed graph in this thesis, the nodes
represent individual devices, and the edges represent connections among the
devices. The detailed construction of the graph from raw data and reasons
for choosing an undirected graph representation are discussed in detail in
Section 4.3.

As per authors of the GraphSage architecture [4], there have been numerous
methods designed for node classification on such graphs and can be generally
sorted into the following three categories:.Matrix factorization-based embedding approaches. Node embeddings learned from random walk statistics.Graph convolutional networks

The next three sections describe the three approaches respectively.

Matrix factorization-based node embedding approaches

This group of algorithms relies on node embeddings produced by the factor-
ization of a matrix, which is induced by the graph structure. The information
utilized by this approach is depicted in Figure 2.2.

Figure 2.2: The matrix-factorization techniques utilize only the graph structure,
highlighted in red. They do not use the feature vectors of devices to produce
the node embeddings.
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...............................2.1. Static graph-based models

For the purpose of this thesis, it is enough to present the basic principles
of this method, taken from [5].

For constructing the matrix that is factorized, first, the adjacency matrix
A, degree matrix D, and Laplacian matrix L are constructed as follows:

Aij =
{

wij , {i, j} ∈ E
0, otherwise

D = diag(d1, . . . , dn)
L = D −A

Where di is the degree of node i and wij is the weight of the edge {i, j}
(equals 1 in unweighted graphs if there exists an edge between i and j,
and 0 otherwise). The factorized matrix is then the normalized Laplacian
matrix L̃ = D−1/2LD−1/2. This matrix’s factorization (eigendecomposition)
produces the embedding for each node in the graph. This approach is not
further used due to two main concerns. The first one is that the embeddings
only contain information about the graph structure. In computer networks,
the connections between devices can be enriched by important features that
cannot be used by this approach. The second one is that matrix factorization is
a costly operation. Consequently, the method is not feasible for large matrices
induced by large graphs. Numerous methods were developed to speed up
the process, such as the power iteration method [6], but the computational
burden is still too high. The benchmarking [7] of clustering algorithms still
shows that this method is one of the worst scaling ones and cannot be used for
large graphs. Furthermore, if any new node appears in the graph (simulating
the scenario of a new device connecting to the network), the node embeddings
must be re-computed from scratch.

Due to the described concerns, this group of methods is not utilized in my
thesis. A more recent group of methods, capturing similar information as the
matrix-factorization-based approach, is described in the next section.

Node embeddings learned from random walks statistics

This approach is inspired by one of the most famous works within natural
language processing, the word2vec algorithm [8]. Word2vec exploits the
proximity of words within sentences to train the embedding vector of every
word. This family of approaches uses the graph structure to obtain the node
proximity by sampling random walks on the graph. The proximity of nodes
within the random walks is then used to learn the node embeddings in a
similar manner to the word2vec architecture. The random walks approach is
incorporated, for example, by the DeepWalk [9], LINE [10], and node2vec [11]
architectures. Since these approaches also only leverage the graph structure
and not information about the node, Figure 2.2 still applies.

The node2vec architecture is the most recent and general architecture
out of the listed ones and has been used to model networks previously [12],

5



2. Methods.......................................
therefore, I dive deeper into its architecture. The model was designed for a
directed graph G = (V, E), where the edges E = {(i, j)| i, j ∈ V} is a set of
tuples representing the oriented edges. As per authors of [11], the random
walks of fixed length l are generated as follows. Given source node u ∈ V,
let ci be i−th node in the walk starting with u. The next node is sampled
according to the distribution:

P (ci = x|ci−1 = v) =
{

πvx
Z if (v, x) ∈ E

0 otherwise

where πvx is the unnormalized transition probability between nodes v and x
and Z is the normalizing constant. The walk is directed by hyperparameters
p, q, controlling the tradeoff between BFS-like walks and DFS-like walks.
Given that the previous traversed edge is (t, v), then the unnormalized
transition probability computed as:

πvx = αpq(t, x) · wvx

αpq(t, x) =


1
p if dtx = 0
1 if dtx = 1
1
q if dtx = 2

where dtx is the shortest-path distance between nodes t and x. The choice of
the hyperparameters p, q then leads to the resulting embedding reflecting either
the structural equivalence of nodes or the community indication (homophily).
Once the random walks are generated, the fitting of the model follows. Let
f : V 7→ Rd be the mapping function from node space to the embedding space
with dimension d, and NS(u) ⊂ V be the neighborhood of a node u generated
through a neighborhood sampling strategy S (the random walks). Then the
following objective function is optimized:

max
f

∑
u∈V

− log Zu +
∑

ni∈NS(u)
f(ni) · f(u)


Zu =

∑
v∈V

exp (f(u) · f(v))

The term Zu is expensive to compute, and therefore a negative sampling
approach is used. The presented objective function is then optimized through
stochastic gradient descent, resulting in a learned matrix of embeddings. This
approach has its advantages, but it suffers from similar issues as the matrix
factorization-based approach described previously:.The approach does not use node features.. Once the graph changes or a new node is added, a costly training process

must follow to obtain updated embeddings..The approach does not scale to graphs with hundreds of thousands of
nodes.
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...............................2.1. Static graph-based models

Due to these disadvantages, I do not use this approach as one of the main
classification methods. The architecture, however, can capture the community
indication if the parameters of walks p, q are set accordingly. I use this setting
of the algorithm in Section 4.3.5 to compare approaches that capture the
global position of a node.

Graph convolutional networks

The disadvantages of the two previous approaches for machine learning on
graphs have resulted in the introduction of a new family of approaches called
graph convolutional networks. The initial paper, first introducing this concept,
is accredited to authors of [13], where they introduce the GCN (Graph Con-
volutional Network) architecture. This innovative architecture incorporated
both the features of nodes and the graph structure for propagating the node
feature information to its neighborhood as depicted in Figure 2.3.

Figure 2.3: The graph convolutional neural networks utilize both the structure
of the graph as well as the feature vectors of the devices. When classifying a
node, the networks aggregate the feature vectors of neighbors defined by the
graph structure, highlighted in red.

Let Ã = A + IN be the adjacency matrix of undirected graph G with
self-connections IN and D̃ii =

∑
j Ãij . With precalculated matrix Â =

D̃−1/2ÃD̃−1/2 the authors define two-layer GCN forward model as:

Z = f(X, A) = softmax
(
Â ReLU(ÂXW (0))W (1)

)
Where the W (0), W (1) are learnable matricies transforming the node feature
matrix X. This approach, where the node feature information is distributed
through the graph, so-called localized convolution in a graph, has sparked
numerous architectures. One of the first architectures extending the GCN
is the GraphSage architecture [4], defining various methods for aggregating
neighbor information of the nodes in the graph. Let {xi|∀i ∈ V} be the set
of node features, W k,∀k = 1, . . . , K be the weight matrix of the k-th layer,
σ be the non-linearity, AGGREGATEk, ∀k = 1, . . . , K be differentiable
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2. Methods.......................................
aggregator function of layer k, N : V 7→ 2V be the neighborhood function.
The forward pass of the k-th layer of the GraphSage model of depth K is
defined for all nodes i ∈ V as :

hk
N (i) ← AGGREGATEk(hk−1

j , ∀j ∈ N (i))

hk
i ← σ(W k ·

[
hk−1

i ∥hk
N (i)

]
)

hk
i ←

hk
i

∥hk
i ∥2

Where h0
i = xi, ∀i ∈ V, and [·∥·] represents concatenation. For a model

with depth K, the final embedding of each node hK
i contains aggregated

information from the K-hop neighborhood of the node i. These embeddings
can either directly represent class probabilities or can be further passed to a
classification layer. Since the model utilizes local information only, the model
scales much better than all of the previous approaches. The GraphSage has
been succeeded on common benchmarks by other architectures stemming
from the same schema, such as GAT [14], GATv2[15], P-GNN [16], and many
more, each defining their own feature aggregating scheme. In my work, I
employ one of the most recent architectures, the GATv2. Its authors identified
flaws in the attention mechanism of the GAT architecture and resolved them
while not worsening the scalability of the algorithm. The GAT architecture
defines the forward propagation rule for node i ∈ V and one attention head
as :

h′
i = σ

 ∑
j∈N (i)

αij ·Whj


αij = softmaxj(e(hi, hj)) = exp (e(hi, hj))∑

j′∈N (i) exp (e(hi, h′
j))

e(hi, hj) = LeakyReLU(aT · [Whi∥Whj ])

Where a ∈ R2d, W ∈ Rd′×d are learnable parameters, d is the dimension of
node embeddings from the previous layer, and d′ is the dimension of the
resulting embedding form the forward layer. The attention mechanisms often
have multiple heads in parallel as it gives more expressivity to the model. As
authors of GATv2 show, the scoring function e(·, ·) is the root of the flaw
of GAT architecture since the features of the two adjacent nodes are not
compared against each other to obtain the attention score, as it is common in
other attention mechanisms, for example in natural language processing. The
GATv2 makes the following adjustment to the attention-scoring function e:

e(hi, hj) = aT LeakyReLU(W · [hi∥hj ])

Since the node features are first concatenated and then transformed by the
learnable matrix W , the attention mechanism is far more expressive, as per
authors of the GATv2 architecture. Further classification linear layer with

8



............................. 2.2. Dynamic graph-based models

LeakyReLU activation layer coupled with the softmax layer is used for node
class prediction:

si = softmax
(
LeakyReLU(Wph′

i)
)

And given the training node set Vtrain ⊂ V, the mean-reduced cross entropy
loss is utilized for training the model’s parameters. Given the label y of the
training node i, the loss is computed as:

L = − 1
|Vtrain|

∑
i∈Vtrain

k∑
j=1

[
1 [j = y] log(si

j) + (1− 1 [j = y]) log(1− si
j)

]

The model utilizing the GATv2 aggregation scheme is further referred to as
the GNN throughout the thesis.

In summary, the model’s architecture enables learning even in tasks where
the graph structure does not have to be relevant for the classification, thanks
to utilizing the node features. However, the lack of information about the
node’s position in the global graph structure sometimes has to be compensated
for, as demonstrated later in Section 4.3.5.

Also, the static nature of the underlying graph is not ensured in the
networking domain. The graph structure changes throughout the day, along
with the communication patterns of devices. Therefore, the following section
focuses on methods that account for this change in the underlying structure.

2.2 Dynamic graph-based models

The third family of approaches focuses on node classification on data struc-
tured as timestamped interactions, so-called dynamic graphs.

As per [17], there are two main models for dynamic graphs:.Discrete-time dynamic graphs (DTDG) represent dynamic graphs
as sequences of static graph snapshots taken at intervals in time..Continuous-time dynamic graphs (CTDG), which are more general
and represent a dynamic graph as a timestamped sequence of events,
which could include node or edge addition and deletion or node and edge
feature transformation.

I experimented with both approaches in my work and devoted the next two
sections to describing architectures from these families. The following section
introduces node classification methods leveraging the DTDG representation.

2.2.1 Snapshot architectures

The snapshot architectures deal with dynamic graphs with the help of dis-
cretization. The changing graph is captured by sampling static graph snap-
shots. For each snapshot, the graph structure, as well as node/edge features,
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2. Methods.......................................

Figure 2.4: The dynamic graph-based approaches can track how the graph
structure changes over time. They can account for new devices occurring in the
network and detect changes in a device’s behaviour within a day. The feature
vectors attributed to the devices also change over time.

may be different. Formally, let G = {G1, . . . ,GT } be the set of observed
attributed graph snapshots. Each snapshot Gj = (V, Ej) is undirected graph
with edge set Ej and shared node set V. The graph neural network model
aims to learn output embeddings hj

i for each node i ∈ V and each snapshot
Gj ∈ G.

For example, the DySAT architecture [18] has two modules, structural and
temporal attention modules. A variant of GAT architecture is utilized as a
structural attention module producing node embedding for each node i and
snapshot: {h1

i , h2
i , . . . , hT

i |h
j
i ∈ Rd }, where d is the dimension of the node

embedding. The structural embeddings are concatenated and passed through
the temporal attention layer, depicted in Figure 2.5. As per [18], for final
embedding zj

i , the temporal attention only focuses on previous structural
embeddings {hk

i | k ≤ j}, capturing the evolution of the node in the network.
The temporal embedding zj

i is then further used for a downstream task, e.g.,
node classification.

The primary concern regarding this approach is that it is computationally
demanding in both time and space complexity. The forward pass shown in
Figure 2.5 shows that during training, the entire computational graph of T
graph snapshots must be stored in memory to make a prediction and back-
propagate the loss. This scenario is not feasible for large graphs induced by
large networks with hundreds of thousands of devices. Even the static GNNs
are computationally expensive, and the snapshots multiply the computational
burden by a factor of T. Other recent architectures from this family ([19],
[20]) work similarly. They aggregate information across snapshots to make
an inference, resulting in large computational graphs spanning across the
snapshots.

However, the granularity that the snapshotting approach provides is still
desired and can be achieved even for large-scale networks. Detecting a
device behaving differently throughout the day may be an essential signal for
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............................. 2.2. Dynamic graph-based models

Figure 2.5: The forward pass of the DySAT [18] architecture. There are two
attention modules, one for graph structure and the other for capturing temporal
evolution across snapshots.

monitoring a network. The following section introduces the family of methods
that do not use discretization for modeling dynamic graphs but represent the
dynamic graph directly as a timestamped sequence of events.

2.2.2 Continuous-time dynamic graph-based approaches

The field of machine learning on the CTDG is very recent, and some examples
of methods from this family are JODIE [21], DyRep [22], TGAT [23], and
TGN [17]. The TGN (Temporal Graph Network) performs best on common
benchmarks in both performance metrics and training speed. The authors
of TGN showed that the rest of the cited architectures are just a particular
instantiation of their framework. Therefore, I will further describe only
the TGN architecture and the notation defined in the original paper. The
TGN framework is based on processing the timestamped events, so-called a
temporal multi-graph.

The temporal multi-graph (multiple edges between two nodes are allowed)
is defined as a sequence of timestamped events G = {x(t1), x(t2), . . . }. The
event represents the addition/deletion of a node or interaction between a pair
of nodes at the respective timestamps 0 ≤ t1 ≤ t2 ≤ . . . . The interaction
of nodes i, j at time t is represented by a directed temporal edge eij(t).
During both of these types of events, the features of the node(s) involved
in this event are updated. The temporal set of vertices and edges with
respect to time interval T is defined as V(T ) = {i|∃vi(t) ∈ G, t ∈ T}, where
vi(t) is a node-wise event, and E(T ) = {(i, j)|∃eij(t) ∈ G, t ∈ T}. The
temporal neighborhood is defined as Ni(T ) = {j|(i, j) ∈ E(T )} and the
snapshot of temporal graph G at time t is G(t) = (V([0, t]), E(0, t)) with
n(t) nodes. The main contribution of the TGN framework is that it can
be applied to the sequence of timestamped events and produce embeddings
of all the graph nodes Z(t) = (z1(t), . . . , zn(t)(t)) for any timestamp t. The
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TGN framework is composed of core modules, each handling a different part
of either keeping the model up to date with the data (memory module,
message function, message aggregator, memory updater) or producing
the temporal embeddings of nodes (temporal embedding layer).

Memory Module consists of vectors si(t) for each node i the model has
seen so far. The memory of a given node gets updated after every event the
model has been involved in. It is supposed to represent the node’s current
state in condensed low-dimensional representation.

Message Function module serves the purpose of representing an event
as a vector. In the case of an event eij(t), two messages are computed:

mi(t) = msgs(si(t−), sj(t−), ∆t, eij(t))
mj(t) = msgd(sj(t−), si(t−), ∆t, eij(t))

where eij(t) is the feature vector of the interaction, si(t−) is the memory
vector of node i just before t and ∆t is the time difference between t and
timestamp of last event node i was involved in. For instance, the msg function
can be an identity function or a multilayer perceptron.

Message Aggregator module is introduced due to the batch processing
of interactions. Messages concerning a node in each batch are aggregated
into one message to update the node’s memory. The aggregation strategies
may be, for instance, taking the last interaction in the batch or taking the
mean of all interactions.

Memory Updater is the module used to update the node’s memory
vector si, once the messages are passed through the message aggregation
function and message function:

si(t) = mem(m̄i(t), si(t−))

where m̄i(t) is the aggregated message. The mem function is usually instan-
tiated as LSTM or GRU cell to capture the node’s evolution over time.

Temporal embedding layer aggregates the node’s temporal neighbor-
hood Ni(T ) into a temporal embedding. In the original paper introducing
TGN, there are numerous embedding layers proposed. This can be, for
example, the Temporal Graph Attention, first introduced in [23]. Unlike
the GATv2 architecture described above, this layer computes the attention
coefficients from the nodes’ features, edge features connecting the nodes,
and the elapsed time from the interaction. The current memory vector of
the respective node represents each node’s features in this aggregation layer.
I skip the neighborhood aggregation’s mathematical description since it is
similar to the static GNN approach.

Once the temporal embeddings of all nodes are generated, they can be used
for temporal link prediction by the classical approach of concatenating the
embeddings of nodes involved in the potential interaction or directly for node
classification. The training of this architecture for link prediction purposes
is displayed and described in Figure 2.6 taken from the original paper. The
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Figure 2.6: The training of TGN architecture for link prediction. The interactions
are processed chronologically in batches. First, the embedding layer produces
node embeddings for nodes involved in the batch interactions from the current
temporal graph and memory state. Then the interactions in the batch are
predicted based on the produced embeddings (with randomly sampled negative
ones). The resulting loss is used to update each of the modules, and the
interactions in the batch are used to update the memory of each node in the
interactions.

link-prediction task is recommended for pre-training the model for further
use in node-classification tasks.

The computational burden of these architectures is rather significant. The
model processes the interaction events chronologically in batches, and large-
scale networks have tens of millions of interactions per day. That results in
very long training times, which are not rewarded with excellent results. In
my experiments, the model could not learn the static device labels properly
compared to other methods. One of the reasons may be that it also struggles
to capture the node position in the global graph, which is valuable information
for device classification tasks, as demonstrated later in this thesis. This task
is in general even harder in dynamic graphs, where the graph structure
is changing constantly with each batch of interactions. The architecture
also evaluates a node based on the current state of the memory module,
which is updated by an RNN cell. The RNN cell, however, may struggle
to capture long-term information in the memory vector, which is vital for
making inferences about a device type.

I have performed numerous experiments, first with the JODIE architec-
ture, followed by extensive experiments with the TGN architecture. The
experiments revealed that the models are outperformed even by the standard
baseline algorithms with static features for the node classification based on
static labels (the node’s label does not change over time).

So far, both approaches for node classification on dynamic graphs have had
significant shortcomings when applied to the networking domain. Therefore,
I have developed a new method for node classification in large-scale dynamic
graphs, called the Snapshot GNN.

13



2. Methods.......................................
2.2.3 Snapshot GNN

The model falls into the broad spectrum of snapshotting architectures and is
one of the main contributions of my thesis. One of the critical attributes of
this architecture is how the snapshots are generated from the raw networking
data. This procedure is described in detail in Section 4.3.2. It ensures that
the generated snapshots capture the most recent information with respect
to the snapshot timestamp while subsampling the graph edges to lower the
computational burden. This approach was inspired by experiments with the
CTDG-based methods from the previous section.

The architecture also does not have a layer aggregating information across
snapshots. The absence of this layer is crucial as it leads to each snapshot
being evaluated in parallel. Consequently, only the computational graph of
one snapshot can be kept in memory at a time, enabling this architecture to
be used even on large-scale graphs scaling to hundreds of thousands of devices.
Furthermore, this approach enables capturing the graph structure through
node positional features (based on the graph of the respective snapshot)
described in Section 4.3.4, which is one of the crucial components of my
classification task.

I again use the GATv2 architecture to produce structural embeddings
of nodes. These structural embeddings are then used by one final linear
classification layer with a LeakyReLU activation layer paired with a softmax
function:

sj
i = softmax

(
LeakyReLU(Wphj

i )
)

where Wp ∈ Rk × d is the learnable matrix, k is the number of classes, and
hj

i is the structural embedding of dimension d from the GATv2 architecture
applied to the snapshot Gj . Furthermore, the cross entropy loss is employed
for learning the model’s parameters. Let Vtrain ⊂ V be the set of training
nodes, then the loss is summed across snapshots:

L = −
∑

Gj∈G

1
|Vtrain|

∑
v∈Vtrain

lji

lji (sj
i , y) =

k∑
l=1

[
1 [j = y] log(sj

il
) + (1− 1 [j = y]) log(1− sj

il
)
]

The loss function is optimized across the snapshots, ensuring the model can
classify devices consistently.

The architecture is specifically suited to large-scale dynamic networks. The
design decisions reflect this goal and may not be desirable for other use cases.
For instance, this approach does not leverage the node evolution in time to
make inferences, which is specific to the networking data. For example, the
device identifier (for instance an IP address) may be used by a different device
in the morning as compared to the evening. Furthermore, in classification
tasks in dynamic graphs where graph structure information is not relevant,
other approaches (such as the TGN) may be more suitable.
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Chapter 3
Data description

This chapter describes the raw networking data I use in my thesis. It covers
data collection, format, and labeling. The choice of the connection logs as
the raw telemetry and the reasons for choosing this telemetry are described
in the following sections.

3.1 Data acquisition

There are two main options for network telemetry with respect to where the
communication is captured. The first option is capturing the communication
at one of the endpoints of the communication, called endpoint connection
logs. The other option is capturing the communication somewhere "along the
way", often at the edge of the network. This kind of telemetry is called edge
telemetry, and the acquisition of these types of telemetries is displayed in
Figure 3.1.

Figure 3.1: The endpoint telemetry is logged at the devices by an application
indicated by the red database icon, while the edge telemetry is gathered at the
border of the network, indicated by the green database icon.

Both telemetry types require different data processing and vary in the
captured information about the network:. Edge telemetry provides information about all the outgoing or incoming
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communication from the public internet. The downside is that much of
the information from internal communication within the private network
may not be logged.. Endpoint telemetry captures both the public and private communica-
tion of a device that is being monitored. Also, the device logging the
events is uniquely identified in the logs (unlike in the edge telemetry).
The unique identifier partially removes the instability of IP address space
that is otherwise a natural part of the networking ecosystem. I elaborate
on this in Section 4.1. A disadvantage of using this telemetry is that the
private network can be heavily subsampled due to the distribution of
monitored devices throughout the private network. A special software,
which collects the computer telemetry, has to be installed on the com-
puters in the private network. This is commonly not the case for all
or even most computers in the private network. The individual private
network endpoint collector coverage has a heavy impact on the portion
of the network observed with this telemetry.

It is important to note that most of the data processing methods that I present
are applicable to both types of telemetries and are therefore very universal.
Based on the previous analysis, it was decided that I will be working with
the endpoint telemetry to get this crucial insight into the private networks.
The data does not capture low-level information, such as raw packet captures,
but is much more similar to the NetFlow [24] data format. Since the data
is collected by a lightweight application installed on the endpoint device,
additional important information about the device is also captured. This
includes, for instance, the process that handles the communications or unique
identification of the device. The extra information from the endpoint is used
for more stable device identification and to craft additional device features in
later sections.

3.2 Endpoint connection logs

As stated before, a plethora of information can be captured at the endpoint
of the communication. I select the information that would be present in
endpoint connection logs from any source, not only the particular data source
that I am utilizing. This further means that all of the methods applied in
this thesis can be applied to endpoint data of any origin. After consultations
with domain experts, I have selected the following log features:. deviceId - Uniquely identifies the monitored device.. source - The communication information of the device that initiated

the communication.. IP - IP address.. p - Port number.
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deviceId source destination dir proto pHash ts
017... ip:

’192.168.80.182’,
p: 59496

ip:
’192.168.0.199’,
p: 80

1 TCP ’75C . . . ’ 165. . .

47f... ip:
’10.4.22.129’

ip:
’72.21.91.29’

1 TCP ’333 . . . ’ 165. . .

p: 64270 p: 80

Table 3.1: Connection log examples. Direction value 1 indicates that the
connection was initiated by the monitored device (outgoing connection).

. destination - The communication information of the target device of
the communication.. IP - IP address.. p - Port number.. dir - Direction of the communication from the perspective of the moni-
tored device.. proto - Constants indicating used protocol. (TCP, UDP, . . . ). pHash - The hash of the executable handling the communication.. ts - Timestamps of when the communication was initiated.

I further want to emphasize that most of these fields are found in any
connection logs, not just the endpoint data. The additional endpoint features
are the deviceId and the pHash feature. The column deviceId uniquely
identifies the device from which the log originates. This is much more
advantageous to IP-to-IP communication logs because an IP address may
change ownership over time and does not necessarily belong to one physical
device over an extended period. The device, identified by the deviceId, is also
tied to the information in either the source or the destination, depending
on the direction (dir field) of the communication. If the direction is outgoing,
then the information in the source is tied to the monitored device, and if it
is incoming, then the information in destination is tied to the device. The
other device in the communication is identified only through the IP address
in either the destination or the source, respectively. Table 3.1 shows an
example of the communication logs.

The following section describes the other input the models need to properly
learn the device types, the device labels.

3.3 Device labels

The type of devices in each network varies greatly alongside the industry the
company is operating in. Some networks may belong to hospitals, resulting
in healthcare equipment devices, while others may be an IT company only
having laptops. Because of this variance, there is no universal template
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for categorizing the devices within a private network. Consequently, the
companies usually design the device classes themselves, resulting in device
categories of various natures. One company may want to group the devices
by their geographic location while another one by the function of the device
in the network.

The models should therefore be trained and evaluated on labels of various
types to assess the models’ usability in a real-world scenario. I selected three
private networks differing in size, industry, and device grouping to train and
evaluate models on. The device counts from these networks, along with their
labels, are presented in Table 3.2.

customer label device count device label
coverage

Customer A

City1 57

0.27

City2 136
City3 136
City4 102
City5 246
City6 60
City7 51
City8 36

Customer B

Domain Controller 11

0.52Protect 298
Protect - IT 20
Server 69

Customer C

Loc. A - servers 514

0.67

Loc. A - workers 1 022
Loc. A Building Services 10
Loc. A IS 24
Loc. A Lab 34
Loc. B - servers 26
Loc. B - workers 22 236
Loc. B App Packaging 15
Loc. B Cardiology EEG 20
Loc. B Cardiology PACS 176
Loc. B Medical Device 27
Loc. B Philips Software 49
Loc. B Radiology 84
Loc. C General 92
Loc. C General Srvs 27

Table 3.2: Device labels for the three selected customers.

Customer A has its devices grouped by geographic location, Customer B
by device function, and Customer C has a combination of both. The labels of
these three customers already show that the device classes differ substantially
based on the individual private network. The administrators of the private
network not only decide how to group the devices but are also responsible
for maintaining the assignments manually. This is a tedious and error-prone
approach, resulting in two significant burdens. First, some of the devices may
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new label merged labels

Loc. A - servers Loc. A Servers Audited
Loc. A Srvs Protected

Loc. A - workers
Loc. A Protected with AV Wrks

Loc. A Protected Wrks
Loc. A Wrks Audit

Loc. B - workers
Loc. B General Wrks

Loc. B Compromised Wrks
Loc. B General Wrks Update

Loc. B - servers Loc. B Servers
Loc. B Srvs Fully Protected

Table 3.3: The difference between some classes is only the mode of the applica-
tion collecting the logs. Since this does not affect the device’s behaviour on the
network, these labels are merged.

be assigned to the wrong class. The other one is that many devices within
the private networks are not classified at all. The ratio of labeled devices
within the network is displayed in Table 3.2 by the column device label
coverage. The values further support the semi-supervised learning scenario,
in which the models can extrapolate the learned knowledge to the rest of the
devices in the network. The models learn on the labeled devices represented
by the device count column. The column presents the number of devices
within each class and shows a severe class imbalance for Customer B and
Customer C. For both customers, special measures had to be taken to train
and adequately evaluate the models. Due to the class imbalance issue and
the high number of classes for Customer C, one of the measures is merging
some of the labels. Several Customer C classes were merged, as presented in
Table 3.3.

The reason for merging these labels is that the name suggests that the only
difference is in the running mode of the application collecting logs on the
computer. As this does not translate to any difference in the communication
patterns of the devices, some of the labels were merged together. The third
customer also has a small number of device categories with fewer than ten
active devices, which were excluded from the main two experiments due to
the scale of the network (more than 65000 devices).
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Chapter 4
Data preparation and feature engineering

For the models to learn to classify devices, relevant information must be
extracted from the raw data and attributed to the device. This chapter
focuses on raw network telemetry preprocessing and feature engineering.
To correctly attribute relevant information to a concrete device, the device
must be reliably identified throughout the telemetry (Section 4.1). Once
the device is consistently identified throughout the connection logs, features
can be crafted and aggregated into the device representation (Section 4.2).
The last part of this section (Section 4.3) describes graph construction for
the graph-based models, presents detailed graph analysis of the constructed
graphs, and introduces novel positional node features.

4.1 Device identification

In each connection log, two devices are to be identified, the source and the
destination. Depending on the direction of the communication, one of these
can be uniquely identified by the deviceId string. This identifier is time-
invariant, and each connection log has this unique string of the device logged.
However, the other end of the logged communication is identified only via an
IP address. This device is often from the same private network and also has
a deviceId identifier assigned. The implemented algorithm aims to replace
the IP address with the deviceId identifier, where possible. Consequentially,
more information can be attributed to the same device, resulting in a more
accurate device representation.

The following sections cover the protocols responsible for the underlying
issue with device identification by an IP address and then the algorithm
partially solving this issue.

4.1.1 IP address space

This section is focused primarily on the IPv4 protocol since the IPv4 protocol
is prevalent in the data, and the IPv6 protocol was explicitly designed to
avoid the covered issues.

Internet Protocol is a standard defined in the early days of the internet
to standardize routing on the whole internet. The IPv4 protocol uses 32-bit
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address space separated into blocks for various purposes such as multicast,
broadcast, loopback, etc. One of the most crucial block separations is the
public and private IP address space, which was introduced in [25]:. Public IP address identifies the device uniquely to the entire internet.

Devices with an assigned public IP address can communicate over the
public internet.. Private IP address identifies the device uniquely to the private network
only. Devices with an assigned private IP address can directly commu-
nicate over the private network only. Private IP ranges are 10.0.0.0/8,
172.16.0.0/12, 192.168.0.0/16.

The IPv4 addresses are only 32 bits long and the address space accounts for
232 = 4, 294, 967, 296 unique addresses only. It was already becoming evident
decades ago that this is not enough to uniquely identify every single device
connected to the internet across the globe. It led to several attempts at
solving the issue, out of which the most commonly adapted and used solution
is the Network Address Translation (NAT) protocol.

4.1.2 Network Address Translation protocol

This protocol was designed to mitigate the IP address exhaustion problem.
The diagram in Figure 4.1, taken from [26], shows a simplified example of
how NAT works.

Figure 4.1: Example of how NAT protocols works. The computers have their
private IP addresses for communication on the private network. The router
translates the private IP address into a public one for communicating outside
the private network.

As shown in Figure 4.1 and described in [26], the NAT protocol solves
the IP address exhaustion problem in the following manner. When the
computer with private IP address 192.168.0.2 wants to communicate to the
public internet, it first sends the packet to the router with private IP address
191.168.0.1. The router then translates the source IP address in the packet
to its public IP address 157.55.0.1 and sends it to the destination on the
public internet. During this step, the router saves the translation table to
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keep the information about the IP address translation procedure. Once the
router obtains a packet from the outside targeting IP address 157.55.0.1, it
looks in the translation table and sends it to the appropriate device on the
private network.

In general, devices connected to the private network have only been assigned
a private IP address. If they want to communicate outside the private network,
the router translates their private IP address into a public one. The router
usually has a single public IP address or pool of public IP addresses provided
by the ISP (Internet Service Provider). There are multiple versions of this
protocol, such as the NAPT (Network Address Port Translation), which
enables many devices on the private network to communicate with the public
internet via a single public IP address. Consequently, multiple devices may be
hidden behind a single (usually public) IP address in the network data. These
devices cannot be distinguished from outside the private network behind the
router employing NAT/NAPT protocols. The problem is usually even more
severe as this single IP address may serve an entirely different pool of devices
over time.

This is a typical scenario employed within most of the networking infras-
tructure worldwide. The last mechanism left to describe is the assignment of
private IP addresses to the devices in the private network.

4.1.3 Dynamic Host Configuration Protocol

The DHCP (Dynamic Host Configuration Protocol) is a standard protocol
introduced in [27]. This network management protocol is designed to assign
IP addresses to devices connected to the network automatically. The inner
implementation details of the DHCP are not crucial for my use case. However,
the allocating mechanism of IP addresses is.

Depending on the implementation of the protocol, these mechanisms may
be used:.Dynamic allocation - The network administrator assigns a pool of IP

addresses to the DHCP server. Each time a device is connected to LAN,
it requests an IP address from the DHCP server (usually a router). The
server is only lending these IP addresses for a given period of time and
then reallocating them if the device does not renew them. The server
allocates the IP addresses from an IP address pool assigned to the router
by the network administrator or ISP..Automatic allocation - The DHCP server again assigns an IP address
from the IP address pool. However, the server keeps a table of the history
of IP address allocations and preferentially assigns the IP address the
client previously had..Manual allocation - The network administrator manually maps a
unique device identifier to an IP address, such as a MAC address.

The dynamic and automatic allocation mechanisms cause the most severe
device identification issues. If these protocols are used, there is no guarantee
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that the device will obtain an identical private IP address, even if it repeatedly
connects to the same private network. An additional issue is that after the
leasing time of the allocated IP address is over, the device must request a
new one, and it does not necessarily have to be the one previously owned.
The leasing time also can be quite low, leading to frequent changes of IP
addresses.

However, the information in the raw endpoint data can be used to obtain
a partial solution to the problem caused by the instability of the IP address.

4.1.4 Device matching

This section describes an algorithm that partially solves these issues with
the information contained in connection logs. To describe the basis of the
algorithm, I present an artificial sample of connection logs with extracted
communication devices.

Table 4.1 represents four communication flows logged by two devices id1
and id2. The value 1 of the dir field represents outgoing communication
from the perspective of the monitored device. The source field contains the
information about the device identified with the deviceId string as described
in Section 3. The information about the currently assigned IP address to
each device can be obtained and used to translate an IP address of the other
device (in this case, the destination) into the deviceId identifier. In the
case from Table 4.1, id1 is currently assigned an IP address 10.85.106.166
as can be seen in the first and last sample. In the third connection log, id2
communicates to this IP address as displayed in the destination field. Since
the device this IP address currently belongs to is known, it can be translated
into the id1 resulting in the enriched connection logs in Table 4.2.

In general, the algorithm can be summarized in the following steps:..1. Collect sequence of tuples (deviceId, ts) for each IP address tied to
some deviceId...2. Create a mapping that maps the IP address to the appropriate deviceId
for each timestamp from the collected sequence for each IP address. This
is done by tracking the changes of ownership of each IP...3. Apply the obtained mapping to the connection logs dataset, replacing
the device’s IP address on the other side of the connection with the
deviceId, where possible.

The success of this procedure depends on many factors, such as the portion
of devices with the application installed or private IP address pools assigned
to DHCP servers. In cases where the IP address is not translated, I model
the IP address as a single device.

The translation must be done cautiously, as a single network usually con-
tains multiple overlapping private networks. Therefore a single private IP
address can be assigned to multiple devices simultaneously. The implementa-
tion must account for this possibility to avoid the misidentification of devices
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device 1 source destination device 2 dir ts
id1 ip: ’10.85.106.166’

p: 53975
ip: ’10.85.102.148’,

p: 8530
’10.85.102.148’ 1 1

id2 ip: ’10.83.100.9’,
p: 61008

ip: ’10.2.2.2’,
p: 433

’10.2.2.2’ 1 2

id2 ip: ’10.83.100.9’,
p: 59496

ip: ’10.85.106.166’,
p: 8080

’10.85.106.166’ 1 3

id1 ip: ’10.85.106.166’,
p: 8080

ip: ’10.91.101.128’,
p: 55208

’10.91.101.128’ 1 4

Table 4.1: Artificial connection logs before the device matching procedure,
device 2 is always identified only by the IP address in the destination field.

device 1 source destination device 2 dir ts
id1 ip: ’10.85.106.166’,

p: 53975
ip: ’10.85.102.148’,

p: 8530
’10.85.102.148’ 1 1

id2 ip: ’10.83.100.9’,
p: 61008

ip: ’10.2.2.2’, p:
433

’10.2.2.2’ 1 2

id2 ip: ’10.83.100.9’,
p: 59496

ip: ’10.85.106.166’,
p: 8080

id1 1 3

id1 ip: ’10.85.106.166’,
p: 8080

ip: ’10.91.101.128’,
p: 55208

’10.91.101.128’ 1 4

Table 4.2: The device matching procedure enriched the artificial log sample. The
information from the source field is utilized in order to match the IP address of
the device 2 to the corresponding deviceId of the device currently using this
address.

as much as possible. For implementation details, please refer to the provided
code.

Once the device is consistently identified throughout the collected network-
ing logs, aggregating information about the device follows. The next sections
cover the feature engineering process on the connection logs and how the
graph structure is constructed from the data.
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4.2 Feature engineering

This section presents a feature engineering process aggregating various in-
formation for all the devices in the private network. In total, there are 122
features for each device: 60 port features (Section 4.2.2), 34 time features
(Section 4.2.3), 25 networking features (Section 4.2.4), and three hash features
(Section 4.2.5). Some of the formulated features require supporting data
analysis provided in the respective section. This analysis relies upon the set
of 8 private networks, which were selected to cover various types and scales
of networks. To ensure variance in the underlying data, the selected customers
operate in various industries such as healthcare, transportation, etc., and
scale from a couple of thousand devices to hundreds of thousands of devices
in a single network. The selection includes five networks, which are only used
for data analysis, referred to as Network 1 through Network 5, and the three
networks used for device classification experiments, referred to as Customer
A, Customer B, and Customer C. The next section shortly introduces the
notation that is necessary in order to manipulate the connection logs.

4.2.1 Connection logs notation

For comfortable manipulation with the connection logs, I define mathematical
notation in this section. I refer to the dataset of connection logs as D. Each
connection log is represented as an ordered tuple:

N = set of all devices in the network
D = {(i, j, f)| i, j ∈ N ; f ∈ Rm}

Where i is the source of the connection, j is the destination of this connection,
and f represents features associated with this connection log. This feature
vector contains the timestamp feature ts, source port port_i, destination port
port_j, direction dir, and protocol proto. Some of the following sections
create additional features of these logs or aggregate log features into device
features. The notation for assigning value X to feature Y of feature vector f
is:

fY = X

Moreover, the following definitions are utilized in the following sections. Given
a device m:

Inm = {(i, m, f)| (i, m, f) ∈ D}
Outm = {(m, j, f)| (m, j, f) ∈ D}

Inm and Outm indicate sets of logs where device m is the target and source
respectively.
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4.2.2 Port features

Port numbers are arguably one of the most potent sources of information
characterizing a device’s behaviour on a network, proven to work well with
machine learning models, for example, in IoT devices classification in [28].
The first part of the analysis focuses on the possible port types that can be
used. Figure 4.2 displays the available port types.

Figure 4.2: From the perspective of the blue device’s communication, there are
four port types to consider. Generally, the destination ports of both outgoing
and incoming flows carry more meaningful information.

The most important information that can be recovered from the port
numbers is:. Services running on the device.. Services the device is accessing.

The first type of behaviour is captured by the destination ports of incom-
ing connections, and the latter is represented by the destination ports
of outgoing connections. I designed the port features to capture both
separately because the number of outgoing logs dominates all the datasets.
If the port statistics were collected altogether, ignoring the connection type,
one of these types (usually the destination ports of outgoing connections)
would dominate the statistics, and the information contained in the other
important port type would get lost.

A feature design decision regarding which services and their ports to
recognize as a feature naturally follows as the next part of the feature
engineering process. As described in [29], the most important port numbers,
ranging from 0-65535, are ports below the 1023 threshold. These ports
are often called reserved ports since these port numbers are reserved for
typical TCP/UDP applications and fall into the category of well-known ports.
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Therefore the main focus of services recognized as features is on the ports
under this threshold.

Table 4.3 presents a list of detected services. These services are recognized
by the ports listed next to them in the table. The port numbers of these ser-
vices are registered and handled by the Internet Assigned Numbers Authority
(IANA) with the procedure introduced in [30].

service ports
FTP 20,21
SSH 22

Telnet 23,992
SMTP 25
DNS 53

DHCP 67,68
HTTP 80, 8080, 8008, 8081

NetBios 135-140
BGP 179

LDAP 389
HTTPS 443

LDAP secure 636
FTP secure 989,990

SMB 445
Kerberos 88
SNMP 161
NTP 123
IPP 631

Certificate Management Protocol 829
ISAKMP 500
Sun RPC 111

RLZ DBase 635
webservice unassigned 81

SNPP 444
Multicast DNS 5353

SSDP 1900

Table 4.3: Detected services with their ports.

Most of these are well-known and established services except the "webservice
unassigned" representing port 81, which is prevalent in the networking data
but has no assigned service. They were either handpicked based on domain
knowledge and consultation with domain experts or added after analysis
of prevalent ports in the data. The port analysis is presented in Table
4.4. For each of the selected networks, the top 5 prevalent target ports (of
either outgoing or incoming communication) in the communication logs are
presented along with a detected service by the port selection presented above.

Based on the collected port statistics, I have included additional services
and ports above the reserved ports threshold into the selected list in Table
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network most common
target ports

port prevalence service

Network 1

443 0.639 HTTPS
80 0.144 HTTP
389 0.072 LDAP
53 0.018 DNS
135 0.016 NetBios

Network 2

443 0.323 HTTPS
80 0.248 HTTP

8082 0.131 HTTP
389 0.062 LDAP
8080 0.032 HTTP

Network 3

443 0.505 HTTPS
80 0.298 HTTP
389 0.046 LDAP

49152 0.032 Undetected
5353 0.017 Multicast DNS

Network 4

8080 0.511 HTTP
443 0.234 HTTPS
389 0.048 LDAP
80 0.044 HTTP

5353 0.030 Multicast DNS

Network 5

8081 0.555 HTTP
443 0.185 HTTPS
80 0.088 HTTP

8080 0.037 HTTP
389 0.028 LDAP

Customer A

443 0.346 HTTPS
80 0.302 HTTP

8080 0.233 HTTP
389 0.026 LDAP
5353 0.015 Multicast DNS

Customer B

443 0.419 HTTPS
80 0.410 HTTP
389 0.047 LDAP
135 0.028 NetBios

49155 0.027 Undetected

Customer C

443 0.361 HTTPS
9090 0.261 Undetected
389 0.102 LDAP
6060 0.074 Undetected
80 0.072 HTTP

Table 4.4: Networks’ port statistics.
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4.3. The additional ports include the known alternative ports for HTTP:
8080, 8008, 8080, 8082, and two additional services noticeably prevalent for
most customers: Multicast DNS (Domain Name System) and SSDP (Simple
Service Discovery Protocol). The ports with "Undetected" service in Table
4.4 are not included in the feature space because no known stable services are
running on these ports, and they are not prevalent in the rest of the networks.

The last part of this section focuses on creating device features based on
the presented list of services. As described at the start of this section, each
device is represented by two sets of features with respect to ports, which are
computed based on features of individual connection logs. For each connection
log, I define port features based on the destination port of the connection
in the following manner. I denote S = {(service, ports)| ports = {i| i ∈ N}}
as the set of services along with their ports as defined in Table 4.3. With
the dataset of connection logs denoted D, the log features are encoded in a
one-hot encoding fashion:

fservice =
{

1 if fportj ∈ ports

0 if fportj ̸∈ ports
∀(service, ports) ∈ S, ∀(i, j, f) ∈ D

Additionally, to the services listed in Table 4.3, I create three similar features
representing undetected ports in the range 0−1023, 1024−10 000, and ports
above 10 000, respectively. The communication flow port features can
then be aggregated into device port features for each respective device.

Given a device m, the computation of the device’s feature for (service, ports) ∈
S of outgoing connections follows as:

moutgoing_service =

0 if |Outm| = 0
1

|Outm|
∑

(m,j,f)∈Outm
fservice if |Outm| > 0

The features represent mean operation over the one-hot encoded features of
the communication flows. The device’s port features of incoming connections
are computed similarly:

mincoming_service =

0 if |Inm| = 0
1

|Inm|
∑

(i,m,f)∈Inm
fservice if |Inm| > 0

Furthermore, I designed two additional node features representing the number
of unique ports the device is communicating to and the number of unique
ports that are being accessed by other devices:

moutgoing_unique = |{fportj |(m, j, f) ∈ Outm}|
mincoming_unique = |{fportm |(i, m, f) ∈ Inm}|

The port behaviour of the device is captured in the presented features. The
following section focuses on another aspect of device behaviour, introduc-
ing features that capture when the device is active and its communication
frequency.
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4.2.3 Time features

I employ two types of time features, absolute time features and features
capturing communication frequency of a device.

The first type of features, the absolute time features, captures when the
device communicates during the day, for how long it was active, etc. To show
that these features add value and information to the device’s representation
and that they are meaningful to each customer, I first provide a supporting
analysis. Figure 4.3 displays the distribution of communication logs for
each analyzed/selected network. The plots show a significant change in the
communication log distribution with respect to the time of the day.

Figure 4.3: Communication logs distribution in a single day within each network.
The resolution for communication logs count aggregation is one minute, resulting
in 1440 minutes in a day.

For most customers, there is a spike in the figure indicating the start of
the working day followed by an increased activity for 8-10 hours as expected.
The working hours of Network 5 are not as clearly distinguished, which
may be due to the fact that this network is large relative to other analyzed
networks and may have branches operating in various time zones leading to
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working hours being shifted accordingly. The pattern emerging in these plots
supports creating features capturing the device’s active periods. The first set
of features captures the distribution of device activity throughout the day,
which is binned into 24 slots representing each respective hour. The features
are computed similarly as port features in the previous section. First, the
features of each communication log are computed followed by aggregation over
the device’s communication logs. With the set of hours in the day denoted
H, the creation of the time features then follows:

fhouri
=

{
1 if fts ∈ houri

0 if fts ̸∈ houri

∀houri ∈ H, ∀(i, j, f) ∈ D

This again creates one-hot encoding as the communication flow time feature,
which is then aggregated to create a device feature. Again, given a device m
and notation defined in Section 4.2.1:

mhouri
= 1
|Inm ∪Outm|

∑
(i,j,f)∈Inm∪Outm

fhouri
, i = 0, . . . , 23

Two additional time features representing the number of hours in which the
device was active and the total amount of time it was active for are computed
as:

mhours_active =
∑

houri∈H

⌈mhouri
⌉

mtime_active = max
(i,j,f)∈Inm∪Outm

fts − min
(i,j,f)∈Inm∪Outm

fts

The two types of features conclude the first type of time features.
The second type of time feature computes the device’s representation with

respect to the device’s communication frequency. First, an ordered sequence
of communication timestamps is collected for each device:

t = (tsi)|Inm∪Outm|
i=1 , ts1 ≤ ts2 ≤ · · · ≤ ts|Inm∪Outm|

Followed by collecting time differences between each consecutive pair of
timestamps:

X = {tsi − tsi−1| i = 2, . . . , |Inm ∪Outm|}

To describe the collected distribution, the following features over this set X
are computed: mean, variance, quantiles (0.25, 0.5, 0.75), skewness,
kurtosis. I included the last two features, skewness and kurtosis, based
on their success in [31] as time series features. The skewness and kurtosis
features are defined as:

mskewness =
∑

xi∈X(xi − x)3/|X|
s3

mkurtosis =
∑

xi∈X(xi − x)4/|X|
s4
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Where s stands for standard deviation, and x stands for mean. Skewness mea-
sures the asymmetry of distribution, while kurtosis measures how heavy-tailed
the distribution is. The following section focuses on additional networking
features that can be mined from the connection logs.

4.2.4 Networking features

The set of features covered in this section captures information about a device
from the networking perspective. Since an insight into the customer’s private
network is crucial for the device classification, some of these features are
computed twice, first for all communication flows the device is part of, and
then again for private communication only.

First, as in previous sections, I define the features of each communication
flow in the identical one-hot encoding manner as in previous sections and
results in the following communication flow features: fT CP , fUDP , and
fpriv_comm. The first two features represent the two protocols of the transport
layer, and the third feature indicates whether the communication is over the
private network. The following device networking features are collected:.mcount = |Inm ∪Outm|.mn_out = |Outm|.mn_in = |Inm|.mdir_mean = |Outm|

|Inm∪Outm|.mT CP _mean = 1
|Inm∪Outm|

∑
(i,j,f)∈Inm∪Outm

fT CP.mUDP _mean = 1
|Inm∪Outm|

∑
(i,j,f)∈Inm∪Outm

fUDP.mpriv_comm = 1
|Inm∪Outm|

∑
(i,j,f)∈Inm∪Outm

fpriv_comm.mn_neighbours = |{j| (m, j, f) ∈ Outm} ∪ {i| (i, m, f) ∈ Inm}|.mout_neighbours = |{j| (m, j, f) ∈ Outm}|.min_neighbours = |{i| (i, m, f) ∈ Inm}|

The last three features capture the number of devices the device communicates
with in total and in both directions.

4.2.5 Hash features

This last section covers the information that can be retrieved from the so far
neglected field in connection logs, the hash field pHash, which represents a
hash of the program handling the communication at the monitored device.
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The features capture the relative frequency of the logged hash. First, the

unique hashes are ordered into a sequence by their count:

H = {fh|(i, j, f) ∈ D}
count(h) = |{(i, j, f)| (i, j, f) ∈ D, fh = h}|, h ∈ H

I collect three sets of hashes from a sequence ordered by this function in
descending order: the top 10%, the set of hashes in the range 10% − 50%,
and the rest. These three sets are then used for one-hot encoded features of
the communication flows, which are then aggregated in the same fashion as
it was previously done for port and time features.

4.3 Graph representation

This section shows how I build and use the communication graph structure in
my thesis. I first describe how the graph is created from the communication
logs (Section 4.3.1 and Section 4.3.2). Then I analyze the graph structure by
standard graph analysis tools (Section 4.3.3). I then use the inferred knowledge
from graph analysis to develop new positional node features (Section 4.3.4).

4.3.1 Graph construction

In order to leverage the graph structure, it must be first constructed from the
raw data. The individual graphs are constructed from private communication
only. There are two main reasons for this choice. Firstly, the previously
described noise in device identification caused by the IP address assigning
mechanisms propagates even more in the public domain. Secondly, reducing
the communication to private only significantly reduces the number of edges
and nodes in the resulting graphs, leading to much faster training and inference
times.

The graph G = (V, E) is constructed from a day’s worth of connection
logs D in the following manner:

Dpriv = {(i, j, f)| fpriv_comm = 1, (i, j, f) ∈ D}

V =
⋃

(i,j,f)∈Dpriv

{i, j}

E = {{i, j}| (i, j, f) ∈ Dpriv}

Each node v ∈ V has an associated feature vector xv, described in the previous
sections. The constructed graph is undirected since the graph neural networks
need to propagate the information on both sides of the communication, not just
the destination. Furthermore, some nodes have only outgoing communication,
so propagating only along the directed edges could result in no information
aggregation for these nodes. The next section covers the snapshot generation
procedure, one of the key points of the Snapshot GNN architecture.
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4.3.2 Snapshot generation

The Snapshot GNN model, described in Section 2.2.3, operates on generated
static graph snapshots G = {G1, . . . ,GT }, where Gi = (V, E i) is an attributed
graph snapshot. This section describes the snapshot generation procedure,
which is one of the key components of this architecture. The shared set of
nodes V is extracted as all devices present in the private network:

Dpriv = {(i, j, f)|fpriv = 1, (i, j, f) ∈ D}

V =
⋃

(i,j,f∈Dpriv)
{i, j}

To construct the edge set for each snapshot, let’s first define a set of com-
munication logs that the node v ∈ V was part of up until the timestamp ti

(tied to the snapshot Gi): Li
v = {(i, j, f)|fts ≤ ti, i = v ∨ j = v}. Then the

considered edge set E i
v for the node v and snapshot i are constructed from the

N most recent connection logs in Li
v. The edge set for the entire snapshot

is then obtained as E i =
⋃

v∈V E i
v. Since each snapshot Gi is an attributed

graph, a "temporal" set of features is computed Xi = {xv|v ∈ V} out of
the communication logs in set Li =

⋃
v∈V Li

v. To reduce the computational
overhead of this architecture, the set of computed features is a subset of the
features used for static classification. Therefore the communication frequency
and hash features are omitted due to long computational times. There are
still two parameters of the snapshot generation procedure left to decide: the
number of recent edges N to consider and how to sample the snapshots
throughout the day.

After consultation with domain experts, the distance between consecutive
snapshots was determined to be at least 2-3 hours. Figure 4.4 shows a pattern
that can further guide the sampling procedure.

The pattern of working hours indicates that sampling a snapshot within
the first few hours of the day would give the model little information about
the devices because the activity is very low up until the start of the working
hours. Due to this pattern, no snapshots are sampled for each customer
within the first 8 hours (this number was obtained experimentally). During
the next 16 hours, six uniformly distributed graph snapshots are captured,
resulting in one snapshot per ∼ 2.6 hours.

The number of included most recent edges N was chosen out of 5 considered
options: 10, 20, 30, 40, and 50. On the one hand, more edges result in
more meaningful features, but on the other, the features become static, and
temporality gets lost. Furthermore, the fewer edges each snapshot considers,
the more sparse the graph is and the faster the training and inference are.
The best option was experimentally determined to take the most recent 30
edges per node for each snapshot.

The last two sections covered constructing graphs representing the networks
at hand. The following sections analyze the graph structures and introduce
newly developed positional features based on that analysis.
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Figure 4.4: Distribution of connection logs throughout the day for Customer A.
A clear pattern is visible, showing the start of the working hours followed by an
elevated activity.

4.3.3 Graph analysis

This section analyzes graphs constructed in Section 4.3.1 from the entire
day’s worth of connection logs. Based on a benchmark performance analysis
of graph libraries in [32], I chose the NetworKit library [33] due to the
combination of numerous available algorithms and fast implementation. I use
a directed version of the constructed graphs for this analysis as it represents
the data most accurately. Table 4.5 presents basic statistics of constructed
graphs.

network log count number of
nodes

number of
edges

Network 1 305 331 2 644 25 484
Network 2 8 279 277 52 948 2 208 026
Network 3 16 262 629 133 555 19 44 982
Network 4 738 305 6 337 80 666
Network 5 57 090 792 130 287 1 358 128

Customer A 839 324 5 134 39 216
Customer B 201 501 1 165 14 440
Customer C 11 214 942 65 892 1 932 538

Table 4.5: Network graphs statistics.

Even after reducing the graph sizes by constructing the graphs from private
communication only, the node count in individual graphs still reaches above
100 000. The size of the graphs limits the use of methods relying on matrices
derived from graphs. These methods include the spectral methods explained
in Section 2.1, or even very recent methods relying on pairwise node distance
matrix, such as PGNN [34] or DE-GNN [35].
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Further insight into the network is gained by looking at the connected
components of each network. The connected components tell us whether the
networks are naturally segmented into components that do not interact with
one another. Table 4.6 displays the connected component analysis.

customer number of
nodes

number of
components

top 10
components

Network 1 2 644 17 2 586, 9, 8, 8, 5, 4,
4, 2, 2, 2

Network 2 52 948 59 52 791, 13, 9, 6, 4,
4, 4, 4, 3, 3

Network 3 133 555 425 132 387, 22, 14, 14,
14, 13, 12, 12, 12, 12

Network 4 6 337 11 6 302, 13, 5, 3, 2, 2,
2, 2, 2, 2

Network 5 130 287 1 485 126 757, 57, 45, 41,
37, 29, 23, 22, 19, 17

Customer A 5 134 14 5 099, 6, 4, 4, 3, 2,
2, 2, 2, 2

Customer B 1 165 4 1 157, 3, 3, 2
Customer C 65 892 4 65 886, 2, 2, 2

Table 4.6: Connected components analysis. The same pattern appears in all of
the networks. Most nodes are contained within a single connected component,
followed by many components of small cardinality.

The analysis shows a similar pattern for each customer. There is one single
connected component, which includes more than 99% of nodes in the graph.
This pattern removes the option to use the connected component analysis
to classify cities for Customer A and shows that the task requires a more
advanced approach.

The connected component analysis shows that the networks are intercon-
nected, and most nodes belong to the same connected component. The traits
of these interconnected networks can guide the configuration of the individual
models. For graph neural networks, one of the crucial design decisions is
how wide of a neighborhood the network aggregates for each node. A good
base for this decision is the diameter of a graph, a measure defined as the
length of the "longest shortest path" between any two vertices in a graph. The
time complexity of computing the APSP (all pairs shortest path) problem
is infeasible for graphs with hundreds of thousands of nodes. Therefore, I
employ an algorithm [36] approximating the effective diameter, representing
the 90th percentile of the shortest paths length distribution. Since it is a
sampling-based approximation algorithm, it was run 100 times to ensure
statistical relevance, and the results are reported in Figure 4.5.

The results show that the constructed graphs are very shallow. Conse-
quently, models should not aggregate wide neighborhoods as, at that point,
the model aggregates almost the entire graph into a single node representation.

I further analyze the properties of individual nodes rather than the graph
as a whole. Especially the importance of nodes in the network, e.g., node
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Figure 4.5: Approximation of effective diameters for each network based on 100
runs. The effective diameter represents the 90th percentile of the shortest paths
in the graph.

centralities. I compute the following node centralities commonly used for
graph analysis:. PageRank centrality is computed according to the original paper [37]

and was introduced to compute the relative importance of a web page..Degree centrality is naturally defined as the number of neighbors..Betweenness centrality is computed with the approximate algorithm
introduced in [38] and represents how likely a node will occur on the
shortest path between two random nodes..Katz centrality introduced in [39], computes the centrality of a node
based on its degree and the degrees of its neighbors.

I further plot out the normalized distribution (to the interval [0,1], except
for the degree centrality) of the centrality measures for each network. For
each network, centrality values are sorted in descending order, and the top
50 values are plotted in Figure 4.6.

The centrality graphs show that in each graph, there are only a couple dozen
of very influential nodes at maximum, while the rest is not that important
with respect to these centralities. This result is what is to be expected
in an internet network, as highly influential nodes (web servers, proxies,
authentication servers, etc.) are scarce in the networks and absorb a lot of
the traffic from the rest of the devices.

The computed centralities can further serve as a tool for identifying these
critical and influential nodes. I utilized this approach to develop additional
positional node features described in the next section.
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Figure 4.6: Node degree distribution and node centralities plots for each network.
Each centrality plot compares scaled centrality values for the 50 most central
nodes in the network.

4.3.4 New graph positional features

The device features presented in Section 4.2 carry information capturing
mainly functional characteristics of a device, such as port statistics or how
frequently the device communicates. Consequently, the models with only these
features could not correctly classify Customer A devices into the respective
cities. The experiments presented in Section 4.3.5 confirmed this issue. The
general issue is to capture a node’s position within the global graph structure.
There exist numerous methods for this task.

As described in Section 2.1, the models utilizing random walks on the graph
can produce embeddings capturing this information. I experimented with the
node2vec model for this very purpose. The experiments with node2vec proved
that the approach is working well, but unfortunately, the models utilizing
the random walks do not scale to large networks and need to be frequently
retrained.

The standard GNN models such as GAT or GraphSage have issues with
this task, as confirmed theoretically and experimentally in [34]. The paper
also proposed the PGNN architecture, which was later surpassed by the
DE-GNN architecture [35] also targeting this task. However, both of these
recent architectures suffer from computational complexity. The models rely
either on pre-computed pairwise node distance matrix (PGNN) or powers of
the adjacency matrix (DE-GNN), which are both computationally infeasible
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for large-scale graphs.

The last option is additional positional features of nodes based on the graph.
The recent paper [16] proposed positional features used in combination with
graph neural networks. Specifically, the authors considered additional node
features of 4 types: random vector of high dimension (uniquely identifies
node), one-hot encoding of nodes, node embeddings obtained by spectral
decomposition (discussed in methods), and node embeddings obtained by
DeepWalk algorithm (from random walks family of algorithms). The first
two options do not capture the graph structure, while the latter two options
cannot be efficiently used for the large-scale graph.

Due to the issues with state-of-the-art approaches for capturing the posi-
tional node information, I have developed new positional features capturing
the position of a node within the graph. The proposed positional features
are computationally very lightweight, scaling easily to large graphs while
providing condensed information in a low-dimensional format. The effect of
these features is confirmed by experiments in Section 4.3.5, where the features
are used for city prediction of devices in the network of Customer A.

To construct the node features, I select a centrality measure and the top
N nodes ordered by the respective centrality score. Distance to each of these
nodes then represents a single feature for each node in the network. With a
set of central nodes denoted S and a node m , the features are computed as:

mdistance_s =
{

dist(m, s) if m, s in the same connected component
−1 otherwise

∀s ∈ S

Since the constructed graphs are undirected and unweighted, the distance
dist(m, s) is computed by the BFS algorithm computing single source shortest
paths. It is run only once from each of the selected N nodes, resulting in low
computational times scalable to any network size.
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4.3.5 Positional features ablation study

This section presents an ablation study on the positional features to evaluate
the effect of the proposed positional node features. The device labels of
Customer A represent the city where the device is located, which is a perfect
classification task for testing the effect of positional node features. The
results, presented in Section 5.2.2, show that the baseline algorithms achieved
only underwhelming 40% accuracy. It was to be expected since the device
features aggregated from connection logs do not contain any features that
could distinguish two devices with similar communication patterns in different
cities. It is confirmed when looking at the features’ importance for the RF
classifier displayed in Figure 4.7.

Figure 4.7: Feature importance for RF algorithm on predicting cities. The
importance was computed by the feature permutation-based algorithm [2].

The feature importances show that the individual features have a high
variance of mean accuracy decrease (the importance is unstable) and do not
carry information for distinguishing geolocation. The following experiment
confirms that leveraging the graph structure is the key to solving this classifi-
cation task. One of the first graph neural networks, the node2vec architecture
introduced in [11], can be set up to capture the necessary information for our
classification. According to the authors, the node2vec algorithm can be set
up in two ways, each capturing different information. The effects of the two
main setups are shown in Figure 4.8.

For the task at hand, the node2vec embeddings should capture the com-
munity indication (homophily), which is displayed in the upper part of the
figure. This is accomplished by controlling the parameters p, q of the random
walks generation procedure, as described in Section 2.1. To capture this
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Figure 4.8: Two different setups of the node2vec algorithm. The node2vec
node embeddings can capture either community indication (upper picture) or
structural similarities (lower picture). The picture is taken from the original
authors of node2vec [11].

information I selected p = 1.5, q = 0.3 as hyperparameters for the random
walk generation. The node2vec algorithm runs in an unsupervised manner,
producing embeddings for each node that reflect this goal. This approach,
paired with the SVM classifier on top of the trained embeddings, produced
the results in Figure 4.9:

The confusion matrix corresponds to 75% accuracy, significantly outper-
forming the baseline models and the GNN without the positional features
(results in Figure 4.10). The results have proven that the graph structure
can be exploited to capture the homophily information in this network. As
discussed previously, this approach is not scalable to large networks, and
therefore the next part of this section compares this approach to utilizing the
positional features. I have designed an experiment in which I train the GNN
model with two types of features available. The first type is the features
mined from communication logs; these are always present. The second type
of feature is the various types of positional features. I test these various types
of positional features:.None - The node features do not contain any positional features.. node2vec embeddings - The node2vec node embeddings are used as

additional positional features for the graph neural network. Embeddings
of multiple sizes were trained to obtain the best performance..Distance to randomly picked 50 nodes..Distance to 50 most central nodes. (newly developed features)

The number of 50 most central nodes was selected based on the analysis
presented later in this section. I consider three centralities for picking the
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Figure 4.9: node2vec embeddings + SVM classifier results.

central nodes: Betweenness, PageRank, and Katz. For each of these options,
I have trained and evaluated the GNN model with respective features, and
the results are presented in Figure 4.10.

The results in Figure 4.10 clearly show that the new positional features (with
respect to the PageRank centrality) improve the accuracy of the GNN model
significantly. The features based on the distance to the central nodes w.r.t.
the PageRank centrality improve the accuracy score by ∼ 10% compared to
the GNN without any positional features. In this setting, the model surpassed
the approach with node2vec embeddings paired with an SVM classifier and
achieved a similar result as GNN model paired with node2vec positional
embeddings. The results show that the positional features capture the node
position in the graph well, to a similar extent as the node2vec approach.

The results also show that the node2vec embedding dimension had to
be raised to 100 for optimal performance. There was no further gain in
performance when rasiing the dimension even further. Not only were the
positional features able to provide similar information in lower-dimensional
representation, but they were also incomparably faster to compute. For
this graph, containing only around 5000 nodes, the training of node2vec
embeddings took 5.43 minutes, while the newly developed features were
computed in 0.0003 seconds (including the PageRank algorithm). Even for
one of the large-scale networks, the network of Customer C, containing around
65000 nodes, the positional features take only ∼ 1.7 seconds to compute. The
final advantage of this approach is that if a new node appears in the graph or
the graph structure changes, the re-computation of these features is almost
instantaneous compared to other approaches.

To further validate how many central nodes are necessary to capture
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Figure 4.10: Comparison of the effect of positional node features on prediction
accuracy. The positional node features are compared to the GNN without them
and the node2vec embedding+SVM approach. I report the best-achieved result
for each method.

this information in this particular network, Figure 4.11 studies the effect of
choosing various numbers of central nodes in this scenario.

The plots suggest that including distances to less than 20 central nodes
(w.r.t. PageRank) is insufficient and that the model’s performance is close to
the model’s results with no positional features. The steep incline at 20-30
most central nodes and stagnation at 50-60 central nodes indicates that the
number of central nodes could potentially be reduced, depending on the
network. However, to capture as much information as possible, the setup of
including the 50 most central nodes w.r.t. to the PageRank centrality was
used in the experiments in the following sections.
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Figure 4.11: The effects of choosing the number of central nodes N to compute
the distances to. To ensure statistical relevance, ten runs were performed for
each number of nodes, and 95% confidence intervals based on the Student’s
t-distribution are displayed.
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Chapter 5
Experiments

The implemented models and representations were tested in-depth to evaluate
the usability of proposed solutions in the real world. Two main experiments
were designed to capture the necessary information for this evaluation. A
detailed analysis of results is provided after describing each experiment. The
experiments are followed by a section presenting the required computational
resources for each method, one of the critical aspects of model usability in
the real world. However, to run the experiments, all the methods need to
be configured for the training procedure, which is described in the following
section.

5.1 Models configuration

Each model has a set of hyperparameters that need to be configured for the
training procedure. This section shortly covers the configuration of these
hyperparameters and the specifics of the training process.

One of the substantial challenges in the training process was the class
imbalance issue. Customer A has a minor class imbalance problem among its
eight classes, and the models were able to perform on this customer without
special measures for solving class imbalance.

To address the class imbalance present in the dataset of Customer B and
the heavy class imbalance issue of Customer C, I have experimented with
three approaches: class weights, subsampling, and no adjustments.

The class imbalance issue of Customer B was handled by applying class
weights [40] to the cross entropy loss function for the graph neural network
models. The same weights were applied to the training procedure of the
baseline models RF and SVM. The AdaBoost classifier performed well even
without the class weights applied to the training.

In the most severe imbalance case, the Customer C dataset, one majority
class (among 15) makes up most of the devices ( ∼ 91%). I had to perform
numerous experiments for this customer to set up the learning procedure
appropriately. First, if the device counts in the training set were proportionally
equivalent, the models generally just classified all the devices as the one
majority class. This issue could not be solved by applying class weights
because the weight for the majority class was so low that the models did not
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Figure 5.1: Confusion matrix of the test dataset from a GNN model trained on
a training dataset with the majority class subsampled and class weights applied
to the loss function.

consider it at all. Therefore, as a countermeasure that helped significantly
with this issue, I used heavy subsampling of the majority class in the training
dataset. After subsampling, the number of devices from the majority class in
the training dataset approximately matches the number of devices from the
second-most cardinal class. However, the class imbalance among 15 classes
still remains problematic in the dataset. After the subsampling procedure, I
tested the class weight approach, but the results suggest that it is not a good
fit for this task. Figure 5.1 presents the results of the GNN model when class
weights were applied to the training.

The plot shows a significant issue in the predictions; the Loc. B-workers
row shows that the majority class is not well classified. The predictions for
the devices in the majority class are spread among similar device classes of
low cardinality. This issue is caused by the class weights that modify the
loss function to assign the same importance for each class irrespective of its
cardinality. A similar, less severe issue can be seen in the Loc. A-workers
row. Overall, the classification accuracy drops, and most of the devices in
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the test dataset are not correctly classified. These issues have led me not to
apply the class weights after the subsampling procedure, which resulted in
much better results. The results of the same model trained without the class
weights are displayed in Figure 5.6. The confusion matrix shows that the
model was able to classify well not only the cardinal classes but also a lot
of the lower cardinality classes as well. Further discussion of the results is
provided in the respective section.

After specifying the general training setup for all the models, the specific
configuration of each model is discussed in the following sections, starting
with the baseline models.

5.1.1 Configuration of baseline models

The baseline models include the SVM, Random Forest, and AdaBoost algo-
rithms, which are all relatively simple and cheap models to train. Therefore,
all three are set up so that each training procedure includes a search over the
hyperparameter grid and picks the best set of hyperparameters based on a
3-fold cross-validation. The selection of the hyperparameter grid, based on
the study [41], is presented in Table 5.1.

model hyperparameter options number of
combina-
tions

SVM
kernel rbf, sigmoid

24gamma 0.1,0.01,0.001
C 0.1,1,10,100

RF
n_estimators 75, 150, 200

36min_samples_leaf 1,5,10
max_features 0.3,0.6, None

AdaBoost

n_estimators 75,150

36learning_rate 0.01,0.1,1
algorithm SAMME, SAMME.R
base_estimator_depth 3,5,10

Table 5.1: The grid-search for hyperparameters of each of the baseline algorithms.
The base estimator used for the AdaBoost algorithm was the commonly used
DecisionTree model.

The SVM model further requires feature scaling before training and evalu-
ation. Experiments showed that there is minimal difference between normal-
ization approaches. The min-max scaling was used in further experiments.

5.1.2 Configuration of graph-based models

Both architectures, the GNN and the Snapshot GNN are graph neural
networks operating either on one attributed graph (GNN ) or on a set of
attributed graph snapshots (Snapshot GNN ). Scaling the node features is
also beneficial for neural network models in general; therefore, I also use the
min-max scaling for these models. Initial experiments also revealed that a
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one-layer network aggregating a 1-hop neighborhood is sufficient. Deeper
architectures resulted in worse performance, longer training times, and an even
more exhaustive hyperparameter-optimization process. One could also argue
that even a 1-layer graph convolutional network aggregates information from
the 2-hop neighborhood since the crafted node features contain aggregated
information from the edges of a given node.

Since the training procedure for the GNN model is more expensive than
for the baseline models, the set of optimal hyperparameters was established
separately before each network’s training procedures. The obtained set of
hyperparameters for the GNN model is presented in Table 5.2 for each
customer.

hyperparameter Customer A Customer B Customer C
learning rate 0.003 0.01 0.004
num_heads 8 4 10

embedding_dim 4 4 40
l2_reg 0.004 0.04 0.001

dropout 0.4 0.2 0.1
n_epochs 400 200 250

Table 5.2: The obtained set o optimal hyperparameters for the GNN model for
each customer. These hyperparameters were then used for each model training
in the following experiments.

The num_heads represents the number of heads in the attention mech-
anism of the GATv2 architecture, and the embedding_dim represents the
dimension of the final embedding that is further used by the classification
layer. The Snapshot GNN architecture uses the same GNN model for the
inference; therefore, a very similar set of hyperparameters was obtained
for this model and is omitted for the sake of brevity. Both of the models
were implemented in PyTorch Geometric [42] framework and trained by the
Adam [43] algorithm. The Tune framework [44] was employed for the initial
hyperparameter search for both of the models.

5.2 Experiment 1 - Training stability

This experiment is designed to evaluate the models’ performance from two
perspectives. The first is how well the models can learn the diverse classes.
The diversity of the classes was assured by the selection of three networks
for classification containing various device types as well as various scales
and topologies of networks. The second part of this experiment is to assess
whether the models’ training procedure is stable throughout the week. The
stability of the training process is an essential metric for potential real-world
use since, generally, models need to be retrained to follow the current data
distribution.
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Figure 5.2: Experiment setup to evaluate the performance of models throughout
the whole working week and to assess the stability of the training process
throughout the week.

5.2.1 Experiment setup

The models are designed to be operated on one day’s worth of data. To
validate the models’ training stability, they are trained and evaluated on
each day of the working week, Monday through Friday. For classification
results collected from various days to be comparable, the train/test split of
the devices remains identical throughout the week. Let’s denote Nl

Monday set
of labeled devices occurring in the data on Monday. Then the device dataset
is computed as the intersection of devices occurring on each respective day:

Nl = Nl
Monday ∩ Nl

T uesday ∩ Nl
W ednesday ∩ Nl

T hursday ∩ Nl
F riday

For the experiment to have any statistical significance, numerous repetitions
of splitting Nl into the train/test split were performed, resulting in 10 datasets.
Once the 10 dataset splits of devices are obtained, the training and evaluation
procedures follow on data from each respective day Monday-Friday, for each
split as shown in Figure 5.2.

The experiment setup leads to 10 datasets for each day of the working
week; therefore, there are 50 training and evaluation phases for every single
model.

5.2.2 Results

Having ten classification results per day allows for constructing confidence
intervals for more reliable guarantees of the models’ performance. This small
sample allows me to infer the confidence intervals based on the Student’s
t-distribution [45], commonly used for estimating the mean of a normally
distributed population with a small sample size and unknown standard
deviation. All the plots I provide have the typical 95% confidence interval
plotted for each applied classifier.

I utilize common standard metrics for classification analysis used in ma-
chine learning, defined, for instance, in [46]. The confusion matrix for the
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classification in the binary case defines the basic elements for constructing
multi-class classification metrics:

actual positive
class

actual negative
class

predicted positive class True positive (tp) False positive (fp)
predicted negative class False negative (fn) True negative (tn)

Table 5.3: Confusion matrix for binary classification.

The derived classification metrics that can be constructed for each respective
class in a one-versus-all manner are expressed as:

Accuracy = tp + tn

tp + fp + tn + fn

Precision = tp

tp + fp

Recall = tp

tp + fn

F1-measure = 2 · Precision · Recall
Precision + Recall

Precision, recall, and F1-measure are defined for each respective class and
can be averaged over classes in a macro manner, defined in [46], to obtain
the metric for the entire testing dataset:

Average recall =
∑l

i=1 recalli
l

Where recalli refers to the recall of the class i. The same macro average is
computed to obtain the metric for precision and F1-score.

The analysis of classification results must be done carefully due to the
heavy class imbalance present for Customer B and Customer C. The achieved
accuracy for each customer is plotted in Figure 5.3.

Since Customer A is the only one not suffering from severe class imbalance
issues, the accuracy metric is meaningful for this customer only. The results
for this customer show that the graph-based approaches achieve much better
classification results than the baseline models consistently throughout the
week. The top performer is the GNN model, while the Snapshot GNN
achieved similar results.

Due to class imbalance issues for Customer B and Customer C, I present
the macro average recall and precision in Figure 5.4 for these two customers.

For Customer B, the wide confidence intervals suggest that the model’s
recall and precision are highly unstable. However, a deeper analysis is
necessary to understand why these macro measures are inconsistent. For
Customer C, the recall and precision metrics, much lower than the accuracy,
might suggest that the model correctly classifies primarily the majority class.
However, again an even deeper insight into the results suggests otherwise.
In the following two upcoming sections, I provide an in-depth classification
results analysis for both customers.
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Figure 5.3: Classification accuracy results. For each method, the 95% confidence
interval for the accuracy metric is displayed.

Customer B results analysis

One of the key elements for classification results analysis is the class imbalance
of this customer. Since the test datasets account only for 25% of devices,
the resulting device counts in both the train and test datasets usually look
similar to the ones in Table 5.4.

The issue with unstable macro averaged metrics comes from the counts of
devices in the test dataset. In Figure 5.5 and Table 5.5, I present a single
result of the GNN model to highlight the problem.
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Figure 5.4: Classification recall and precision metrics along with confidence
intervals for each classifier.

label device count train dataset
count

test dataset
count

Domain Controller 11 6 5
Protect 298 229 69
Protect - IT 20 15 5
Server 69 56 13

Table 5.4: Customer B label count for train/test dataset.
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Figure 5.5: Confusion matrix of a GNN model on the test dataset of Customer
B.

precision recall F1-score support
Domain Controller 0.83 1.00 0.91 5

Protect 1.00 0.90 0.95 69
Protect-IT 0.50 1.00 0.67 5

Server 0.86 0.92 0.89 13
macro avg 0.80 0.96 0.85
accuracy 0.91

Table 5.5: Derived performance metrics from the confusion matrix in Figure 5.5.

In this case, the macro average for precision and recall is reported to be
relatively high. However, it would be enough to classify only one domain
controller incorrectly and one device from Protect-IT class incorrectly, and
the reported macro average for recall would fall by more than 10% to 0.855.
This significant change caused by only two devices is caused by the low
number of devices within the two classes. The lower the number of devices in
the class, the more impact each misclassified device from this class has on
the metric.

This issue is even worse than in this case since the testing dataset usually
has fewer than five devices in the Domain Controller class. Therefore,
one misclassified device from this class (out of 92 total devices) significantly
impacts the macro averaged metrics, leading to the confidence intervals being
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very broad and the reported macro averaged score unstable. There is another
option to report the averages weighted by the support of each respective class,
but then the majority class dominates the metrics.

Because of this issue, the confidence interval plots can give only limited
information on the classification performance, and a more profound analysis
with a confusion matrix and classification metrics for each respective class is
necessary.

The confusion matrix shows that the GNN model mostly makes a good
guess for the few misclassified devices. For example, the predicted Protect-IT
devices fall either into Protect-IT or Protect class, which both represent
workstations. The one incorrect prediction of Domain Controller for
a server is also a sound suggestion since the predicted class is closest to
the correct one out of the rest. Furthermore, as discussed in Section 3.3,
the devices may be assigned to the wrong class, and therefore the models’
predictions may even be valid.

Since the class imbalance is even more severe for Customer C, the following
section focuses on a similar deeper analysis of the results for this customer.

Customer C result analysis

The classification analysis for this customer has to be even more careful,
as there are 15 classes for the devices in this network, many of which also
have very low cardinality. This low cardinality causes similar issues with the
average macro scores as it does for Customer B, although the variation is
lower due to the high count of classes. For this customer, I have picked one
of the train/test splits to show the distribution of devices:

label device count train dataset
count

test dataset
count

Loc. A - servers 514 389 125
Loc. A - workers 1 022 805 217
Loc. A Building Services 10 7 3
Loc. A IS 24 16 8
Loc. A Lab 34 26 8
Loc. B - servers 26 19 7
Loc. B - workers 22 236 784 4 811
Loc. B App Packaging 15 9 6
Loc. B Cardiology EEG 20 19 1
Loc. B Cardiology PACS 176 130 46
Loc. B Medical Device 27 23 4
Loc. B Philips Software 49 38 11
Loc. B Radiology 84 60 24
Loc. C General 92 71 21
Loc. C General Srvs 27 22 5

Table 5.6: Customer C label count for train/test dataset. The Loc. B -
workers class is heavily subsampled in the training dataset.

The high amount of low cardinality classes in Table 5.6 already hints at a
similar issue in the macro averaged performance metrics that were described
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in the last section. The analysis again focuses on the presented classification
results in Table 5.7 and the confusion matrix in Figure 5.6.

precision recall F1-score support
Loc. A - servers 0.93 0.97 0.95 125
Loc. A - workers 0.89 0.96 0.92 217
Loc. A Building Services 0.0 0.0 0.0 3
Loc. A IS 0.0 0.0 0.0 8
Loc. A Lab 0.0 0.0 0.0 8
Loc. B - servers 1.0 0.71 0.83 7
Loc. B - workers 1.0 0.99 1.0 4811
Loc. B App Packaging 1.00 0.17 0.29 6
Loc. B Cardiology EEG 0.14 1.0 0.25 1
Loc. B Cardiology PACS 0.70 1.00 0.82 46
Loc. B Medical Device 0.14 0.25 0.18 4
Loc. B Philips Software 0.0 0.0 0.0 11
Loc. B Radiology 0.95 0.83 0.89 24
Loc. C General 0.95 0.95 0.95 21
Loc. C General Srvs 0.80 0.80 0.80 5
macro avg 0.57 0.58 0.53
accuracy 0.98

Table 5.7: Derived performance metrics from confusion matrix in Figure 5.6.

The performance results in Table 5.7 for respective classes seem to fall into
two extremes. Either the model can distinguish the class well or almost not at
all. The focus of this analysis is then on the classes that the model struggles
with. The confusion matrix in Figure 5.6 provides the necessary detail for
analyzing the GNN’s confusion.

For example, the confusion matrix displays that the model classified all
devices from classes Loc. A Lab, Loc. A IS, and Loc. A Building
Services entirely into the Loc. A−workers class. However, this is a
correct assessment as both classes fall within the Loc. A−workers class,
the customer had just separated a subsection of this class into a separate
class. Similar results from other models indicate that there is not a distinct
difference among these three classes, so the models assign the majority class
out of these similar ones.

A similar situation occurs for misclassified devices from low cardinality
classes Loc. B App Packaging, Loc. B Cardiology PACS, Loc. B
Medical Device, Loc. B Philips Software, and Loc. B Radiology.

All devices from the Loc. B Philips Software class were classified into the
Loc. B−workers category, which again is not an entirely wrong assessment
since the presence of different software does not necessarily translate into
different behaviour on the network and it still falls into the broader category
of Loc. B−workers. The confusion matrix for the other listed classes shows
that the devices were categorized as the general class Loc. B−workers or
the other subcategories of workers from Loc. B.

The classes representing servers were usually classified very well, and overall,
the results show that the model was able to learn the characteristics of the
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Figure 5.6: Confusion matrix of the test dataset.

classes with higher cardinality, and even for the classes with few devices only,
the model is making either correct or at least sensible predictions.

Experiment summary

The first experiment and the following analysis have confirmed that the
device representation captures the necessary information for classifying the
diverse device types. The baseline models performed significantly worse for
Customer A, where the graph structure became a crucial component. The
graph structure has proven highly beneficial and enabled the graph-based
models to learn the specifics of the classes very well. The two graph-based
models are the best performers across the evaluation. The newly developed
model, the Snapshot GNN model, has achieved similar results as the GNN
model while providing the ability to work with dynamic networks and therefore
track the devices throughout the day.

Furthermore, the results demonstrated that the training procedure is stable
throughout the week, allowing for retraining the models when necessary.
The following experiment evaluates whether the models need the retraining
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frequently and examines how the performance of already trained models
degrades over time.
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5.3 Experiment 2 - Prediction stability

The second experiment logically follows the first one, testing how frequently,
if at all, the models must be retrained in order to retain their predictive
abilities.

5.3.1 Experiment setup

Since this experiment aims to test how long the models retain their perfor-
mance, all of the models are trained on a single day and evaluated on six
consecutive days. Wednesday was decided to be the initial training day for
the models since, usually, the data during the middle of the week contain the
most common traffic.

The devices occurring on Wednesday were again split into the train/test
datasets, similarly to the first experiment. To obtain statistical boundaries
for the models’ results, ten randomized train/test splits were again performed.
Once the splits are obtained the training and evaluation phases follow, as
displayed in Figure 5.7.

Figure 5.7: Setup of the second experiment

On Wednesday, the models are evaluated on the test split of the dataset,
and for the following six days (Thursday - Tuesday), the models are evaluated
on all labeled devices occurring on each respective day.

Graph-based methods setup

The methods relying on positional features must be carefully set up for this
experiment. As explained in Section 4.3.4, the positional features mined from
graph structure compute the distance to a set of central nodes present in
the graph. Based on the ablation study in Section 4.3.5, an amount of 50
central nodes was selected for this purpose. If there are N devices in the data,
the resulting positional feature matrix P ∈ RN×50 has one dimension for
each specific central node. Since on the rest of the days, Thursday through
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Tuesday, models are only evaluated and not trained, the meaning of these
features must be the same as in its training phase, and the initial set of
central nodes must be relied upon for each of the evaluation phases, assuming
that the central nodes are active through rest of the week. I provide plots
showing how many central nodes remain in the network for the rest of the
evaluating days for each of these three customers:

Figure 5.8: Central nodes presence for each of the customers for each of the
evaluation days.

Figure 5.8 shows expected behaviour, that for each customer, the number
of detected central nodes drops significantly during the weekend. Since the
nodes are not present in the data, the distance features cannot be computed
and are set to −1 (which represents unreachable). I suspect that to be one of
the reasons for the poor performance of the graph-based models on weekend
data, as discussed in upcoming sections.

5.3.2 Results

Since all the devices are evaluated for each customer on days Thursday
through Tuesday, I first examine the occurrences of each class for Customer
B in Figure 5.9.

The figure shows an expected pattern, the general class Protect shrinks
the most during the weekend. The other classes, representing servers and IT
workstations, remain much more stable even throughout the weekend. This
pattern is the expected behaviour and holds for the other two customers.
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Figure 5.9: Customer B ratio of occurring devices for each class in each respective
day. The ratios are obtained by normalizing the number of devices by the
maximum of devices observed for each class.

The first reported metric for all customers and methods is reported in
Figure 5.10.

The accuracy results for Customer A indicate that the performance of
graph-based models, which were the best-performing models for this customer
by a large margin in the previous experiment, rapidly deteriorates and even
falls below the performance of the baseline models. One of the key factors
contributing to performance issues with the graph-based methods could be the
changes in the graph structure, especially on weekends, as shown previously.

Again, since the accuracy metric is only a meaningful metric for Customer
A, I also report the macro averages for recall and precision for customers B
and C in Figure 5.11.

Since the testing dataset is 100% (not just 25%) of devices on Thursday
through Tuesday, the lower-cardinality classes have more devices, and the
issue with unstable confidence intervals from the previous experiment does
not occur. Consequently, the confidence intervals for Customer B are much
narrower, and the metrics are more meaningful. For Customer B, the models
generally have a similar drop in performance on the weekend but retain their
performance for the rest of the days.

For Customer C, the performance of the graph-based methods again de-
grades significantly faster than that of the baseline methods that do not utilize
the graph structure. It may be because Customer C has devices grouped
partially by location, similar to Customer A. The graph models rely on the
graph structure for predictions and cannot cope with changes in the graph
structure. As a consequence, the performance of the models degrades quickly
as for Customer A (similar pattern visible in Figure 5.10). This claim is fur-
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Figure 5.10: Models’ accuracy confidence intervals for each customer and method.

ther supported by the graph-based models not having this issue for Customer
B, who has devices grouped by function and not location. Consequently, the
models do not suffer as much because they do not predict the labels based
on the changing graph structure but on the crafted networking features.

Experiment summary

Overall, the presented results indicate that the period the models retain their
performance depends on the individual network, the nature of labels, and
the individual model. For Customer A, the by-far best graph neural network
models leverage the graph structure for predictions, but they do not cope well
with the change of the graph structure on consecutive days. For Customer
B, the models’ performance drops during the weekend but on the rest of the
days the models retain their performance. For Customer C, the graph-based
models degrade, while the other models retain their performance for a longer
period.

This experiment concludes that while the graph-based models are usually
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Figure 5.11: Classification recall and precision results for the second experiment.

the best-performing ones for the evaluation on the training day, the graph
structure change among the various days of telemetry leads to a degradation
of their performance if the graph structure is crucial for the classification
task at hand. For Customer B, the graph models retained their performance,
which may be because the graph structure or the positional node features
are not as relevant for the device classes of this customer. The three baseline
models are more stable regarding the prediction metrics during the week and
less prone to change in the underlying data structure.
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5.4 Models’ training resources comparison

This section provides an analysis of the resources each method requires,
which considers the retraining requirements and the necessary resources for
individual training of each model.

Not every method uses the data in the same format; therefore, preparing the
data into the necessary format should also be accounted for when measuring
the required time for training. The following section focuses on the data
preprocessing for each method.

5.4.1 Data processing pipeline

When evaluating the resources each method requires, it is necessary to consider
the entire pipeline processing the raw data for the five models. Figure 5.12
presents a diagram showing the data pipeline for each model.

Figure 5.12: Data processing pipeline for each model. The baseline models and
the GNN model utilize the static device features. The GNN model also needs
to mine the graph structure from the logs, while the enriched communication
logs are processed by the Snapshot GNN.

Figure 5.12 shows that each method’s data sources vary, and the time to
create each resource must be included in comparing the models.

The pipeline architecture is considered in the next section, which presents
the time comparison of each method.

5.4.2 End-to-end time comparison of the methods

Before comparing the entire processing times of each method, I would like to
revisit how every model was trained to interpret the results correctly. The
baseline models (SVM, RF, AdaBoost) were trained with hyperparameter
grid search every time due to being computationally lightweight. In contrast,
the neural networks were trained with already pre-determined hyperparame-
ters. This puts the baseline models at a disadvantage in the time resources
comparison, which was compensated for by the grid search being parallelized
on a 32-core CPU - AMD EPYC 7571.
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Figure 5.13 displays the standalone training times for all models. The times

for graph neural networks are reported for training on the 32-core CPU and
on one of the fastest GPUs available for AI inference - NVIDIA T4 Tensor
Core GPU.

Figure 5.13: Training times of each method for each customer. The training
times were averaged over ten runs (except for Snapshot GNN on CPU, which
had only five repetitions due to long training times) to provide better statistical
information.

The GPU training, marked by suffix _gpu, helped to significantly reduce
the training times for graph neural networks, as shown in the respective figure.
The training on the GPU is around five times faster compared to the training
on a CPU. Since the GPU training is much faster, I report only the training
times measured on the GPU in further plots.

There is a significant difference in resource consumption among the methods,
but to obtain a better overall assessment, all of the data processing must be
taken into account. Figure 5.14 shows the end-to-end time it takes for each
of the methods to process raw logs, create the respective dataset, and train
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the model.

Figure 5.14: End-to-end processing times for each of the methods.

Figure 5.14 puts the time spent by each part of the pipeline from Figure 5.12
into perspective. The blue part of the plots, the device matching algorithm,
is a constant specific to the endpoint data. For data where both devices
are identified equally in the logs, the device matching procedure would be
redundant, and no time would be consumed by it. Due to the scale of the
data, all of the data processing methods, except for model training and graph
construction, all of the data preprocessing is implemented in Python with the
Dask [47] framework, which is a parallel computing platform able to work
with large distributed clusters in the cloud.

Overall, most of the time is not spent on actually training the models but
rather on processing the data into the respective dataset. The majority of time
consumes the device matching algorithm and device features computation
(or log features in the case of Snapshot GNN ). It also shows that while the
training time of the Snapshot GNN model is longer than for the rest of the
models, it benefits from working with enriched communication logs directly
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with respect to total processing time. This, for instance, results in lower
end-to-end processing time than the rest of the methods for two out of three
customers while achieving still acceptable processing times even on the largest
customer.

The results show that the training time of each method accounts for
only a rather small percentage of the overall end-to-end processing times
for small and medium customers. For the largest network, the network of
Customer C, the GNN takes longer due to issues discussed, for example, in [48].
These longer training times could be reduced for example by neighborhood
sampling mechanism, employed for instance by GraphSage architecture [4],
or a simpler neighborhood aggregating scheme. That would result in smaller
computational graphs and faster forward and backward passes during training.
The classification results of Snapshot GNN model, which utilizes the sampling
in a similar form as well (building the graph from the last 30 interactions),
provide a solid ground for employing this method to reduce the computational
burden for the GNN model while retaining the performance.

One of the key takeaways from the presented comparisons is that most of
the time is consumed processing the raw logs into the datasets. These datasets
must be created for both the training process as well as the inference process.
The section analyzing models’ performance retention suggests frequently
retraining the models as the underlying data change leads to performance loss,
especially when the graph structure of the network is crucial for classification.
Therefore, if the datasets are already created, retraining the models for the
current data would be in general beneficial with respect to the total processing
times. Furthermore, the models do not have to be retrained from scratch but
only fine-tuned for the current data, reducing the training time significantly.
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Chapter 6
Conclusion

My thesis aimed to develop a method for the behavioural classification of
network devices working in a semi-supervised manner.

I have performed an extensive study on the state-of-the-art methods that
are used for node classification on static graph-structured data and dynamic
graph-structured data. Based on my research, I have selected three models
that serve as baseline models. Furthermore, I have implemented an advanced
graph neural network model that uses the static graph structure for inference.
Preliminary experiments with state-of-the-art methods for node classification
in dynamic graphs showed that the methods were unsuitable for the task.
Therefore, I have also developed a new model for classifying nodes in dynamic
networks, the Snapshot GNN.

I have leveraged deep domain knowledge to craft meaningful device rep-
resentations and developed new node positional features that capture the
global position of a node in a graph. The additional value of these features
was confirmed in the presented ablation study. The device representation was
then used to perform thorough experiments with the implemented methods.

The advanced static graph-based model GNN and the newly developed
method Snapshot GNN were the best performers when evaluated on a test
dataset from the same day. The Snapshot GNN reached a similar classification
performance level as the static graph-based neural network while providing
the ability to track the devices in the network throughout the day due to
working with dynamic graphs. However, the second experiment showed that
the change of the underlying graph (when trained models are evaluated
on consecutive days) led to more severe performance degradation of the
graph-based models. Finally, both the advantages and disadvantages of the
implemented methods were analyzed in terms of both the performance and
the computational requirements. The analysis showed that frequent retraining
would be beneficial to obtain the best performance, even with respect to the
training requirements of the best-performing models.

Suggestions for further research are divided into two main directions. The
first one is a different approach to constructing the underlying graphs. In this
work, all the graphs are unweighted, but a graph where edges are weighted
by the frequency of the communication could be utilized. The weighted
graph could potentially improve the new positional features and enable using
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graph neural network architectures accounting for the edge weights. The edge
feature information, in general, enables the usage of architectures leveraging
both the edge features and the node features in the neighborhood aggregation
procedure.

The second direction of further research is eliminating the need for manually
assigned labels. Instead of relying on manually assigned labels, unsupervised
clustering algorithms could categorize the network behaviour of a device
automatically. The algorithms would require a very carefully selected feature
set and post-processing steps but could lead to network-agnostic clusters of
devices. The clusters would ideally describe the types of devices occurring
within the network even without the manually assigned labels, which are hard
to obtain and could contain errors.
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